Seagrasses in Variable Environments: The Importance of Life History in Controlling *Ruppia maritima* at the Everglades-Florida Bay Ecotone

Theresa Strazisar, Marguerite Koch, Elizabeth Dutra and Christopher J. Madden

Importance of Ruppia maritima Globally and Locally

- Cosmopolitan SAV creating benthic habitat in variable environments
- Seagrass of the future? (Cho et al. 2009)
- Dominant at ecotone between freshwater Everglades and Florida Bay
 - Increased abundance specific CERP Goal (2005)
 - Specific Goal Restoration "restore SAV habitat functionality in transition zone" (RECOVER 2005)
 - SFWMD minimum flows levels fresh water FL Bay

Everglades Ecotone

Freshwater Zone

Transition Zone

Little Madeira HammockFan Palm Hammock

Maderia Hammock

Eagle Key

Pass Key

Terr

Lake K

Dorth M

Marine Zone

A financia e statio de la construcción de l

(Figure credit Google Earth®)

Overarching Objective

Determine mechanisms controlling *Ruppia maritima* distribution Everglades/Florida Bay ecotone

Working Hypotheses

- *R. maritima* is limited by germination and survival (abiotic)
- Species persistence at the ecotone is constrained by viable seeds / recruitment into the seed bank
- Controlled by competition (biotic)

R. maritima Stage-Based Life History Model

Experiments and Field Studies FAU *Ruppia maritima* Ecotone Research Program

- 1. Mesocosm Germination
- 2. Seedling Salinity Experiment
- I. Field Germination Study
- II. Seed bank Viability Study
- III. Competition Study

I. Field Germination Study Sites (Joe Bay Transect)

(Figure credit Google Earth®)

Germination Study Salinity Analysis

Harmonic (Fourier) Analysis of Salinities

Correlations transitions to salinity parameters

Transition					
	sd-sd	sd-sg	sg-veg	veg-veg	cr _{veg}
Salinity (psu)					
Min	-0.16	0.23	0.43	0.62	0.05
Max	0.26	-0.35	-0.72 ^{**}	-0.65	-0.20
Avg	0.22	-0.30	-0.60	-0.69	-0.14
SD	0.23	-0.31	-0.62**	-0.69**	-0.15
Fluctuations (h)					
< 12	0.21	-0.28	-0.55	-0.68	-0.12
12-24	0.23	-0.32	-0.63	-0.69**	-0.16
24-48	0.26	-0.35	-0.73**	-0.63	-0.21
48-72	0.15	-0.20	-0.37	-0.58 [*]	-0.02
72-96	0.01	-0.02	0.03	-0.16	0.16
[*] p < 0.05, ^{**} p < 0.01					

sd = seed sg = seedling veg = vegetative adult $cr_{veg} = clonal reproduction$

II. R. maritima Seed Bank Study Sites

Seed Bank Classification

Low Seed Viability Ecotone R. maritima

R. Maritima Seed Densities in Reproductive Meadow

III. Competition Experiment (Joe Bay Transect)

(Figure credit Google Earth®)

III. Competition Study Salinities

III. Competition Study Results

Conclusions

- 1. Competition limiting *R. maritima* at upper ecotone
- 2. Seedling and vegetative adults "bottlenecks" to life history development with variable salinities closest to FL Bay
- 3. Combination of salinity and competition at central ecotone
- 4. Small viable seed bank dependent on adult survival and sexual reproduction
- 5. High-density seed "hot spots" can rapidly generate a large biomass of *R. maritima* reproductive shoots, particularly in the more nutrient-rich west Bay

Acknowledgements

Funding:

Everglades National Park-FAU Environmental

Sciences Fellowship

South Florida Water Management District

Florida Atlantic University:

Joanne Tate, Joshua Filina, Marisa Charneco, Pedro Lara, Atalya Peritz, Amanda Mattair, Chris Grima, Greg Ward and Jeanette Wyneken, Ph.D.

National Audubon: Peter Frezza

Field Support: Florida Bay Interagency Science Center Thomas Frankovich, Ph.D. Kevin Cunniff

Thank you! Questions? tstraz@gmail.com